QUICC-IDM Programming Specification
Written by: Robert Coward

Date: 2-Aug-06
Introduction
QUICC-IDM (QEDD9008 Universal Interface & Control Circuit - Intelligent Display Manager) is a high quality interface board that allows full PC control of up to three QEDD9008 display panels. Based on a PIC16F84 microcontroller, it provides intelligent power management and enhanced system control and status reporting. The full feature list is as follows:

· Full duplex serial comms between PC and display panels.

· PIC16F84 micro providing power management, configurability and status reporting.

· Protection circuit shuts down 8V PSU if any panel shows a fault (can be disabled via switches).

· Automatic power-down standby mode entered if DTR stops toggling (can be disabled via switch).

· Display flash clocks controlled via PC DTR line, with configurable dividers (allows two different flash rates).

· Dual stage booting process prevents “sign-on” message appearing on start-up.

· User configurable boot and standby timers for optimum performance (stored in non-volatile memory).

· Optional opto/relay drive circuit for PSUs without a built in control signal.

· Manual reset button and software programmable re-boot.

· Four LEDs clearly indicate system status.

· Can be free standing or mounted in a Verobox (type 214 recommended).

This document is intended for 3rd party developers who wish to write applications that interface with this board. For information on using the board to control the display panels, please refer to the QUICC-IDM Installation and Operating Guide. For information on interfacing to the display panels themselves, refer to the QEDD9008 Display Driver Information document, which contains full details of the software protocols.

Disclaimer
This board is the result of a private venture, and as such comes without a guarantee of any kind. I cannot be held responsible for any loss, injury or damage which may result from the use of this board or these instructions.

Basic Concepts
Important! The PIC is purely a management device and is incapable of directly talking to the display panels, or of receiving data directly from them. QUICC-IDM is designed for interface and control functions, and cannot be used to display messages without a PC present.

QUICC-IDM’s serial management is implemented by connecting a PIC input directly to the transmit line from the PC to the displays, and gating a PIC output with the received display data, which is fed to the PC’s receive line. The end result is that the PIC and display panels are all on the same “party line”, receiving all data transmitted by the PC. Conversely, the PC receives any data transmitted by the PIC or the displays, but only one panel or the PIC can transmit at any one time.

All QUICC-IDM management transactions work in the same way:

1) PC transmits a QUICC-IDM command message.

2) PC waits for a response, or times out after half a second.

3) QUICC-IDM responds with a status message.

When a management transaction is outstanding, the PC must not transmit any data either to the PIC or the displays, as this will affect the timing of transmitted data from the PIC, possibly resulting in garbled transmission. Also, since the PIC can only operate on half duplex, it will lose any messages sent to it if it is transmitting at the same time. Please remember that the PIC is a basic device, with no UART and a single timer, so all serial comms has to be handled at a very low level internally.

QUICC-IDM is primarily designed to operate with the enhanced display firmware, when it becomes available. For this reason, and because the existing display firmware is rather primitive, it is not 100% compatible with the existing display protocol. This incompatibility only affects certain IDM messages which take a value, and means that such messages may, in rare cases, cause slight changes to the displays (contrast set to maximum, if not already at maximum). Therefore, when sending such commands, it is advisable to readjust the display contrast afterwards, or to hold the displays in reset (standby mode). QUICC-IDM itself is fully immune from any data sent to the displays.

Normally, QUICC-IDM will respond pretty instantaneously to commands sent to it, except when the non-volatile (EEPROM) memory is being updated, where delays of up to 50ms could result. The PC should apply a half second timeout on any IDM transaction, and assume that the card is not responding if this is exceeded. When the PC software is initially started, it can assume that a QUICC-IDM board is not present if it doesn’t get a response to its first IDM command.

For simplicity, all IDM messages follow a fixed length format, with the returned status message containing all data of interest, not just that related to the command previously sent. Also note that due to the internal structure of the PIC software, certain commands (such as start up and enter standby) will return a status message before the command has been actioned. However, messages that take a value always do update that value in the returned status message.

PC to QUICC-IDM Command structure
All IDM commands have the following structure (all fields are byte wide):

<00h>, <FEh>, <command>, <data>, <checksum>, <EFh>

Command codes and associated data fields are described in later sections. For commands that do not take data, a default value of 20h (32 decimal) should be sent. The checksum is the addition of the command and data fields only, and does not include the header and terminator codes. If the calculated checksum would become zero, then a special value of 5Ah should be substituted in its place. This does not reduce the robustness of the checksum, and is to prevent zeros from being transmitted in a message.

Note that the zero field must be sent before the rest of the message, and that no other field must contain zero. This is in order to maintain a robust protocol, as zero resynchronises QUICC-IDM to wait for its message header. It will also be used to synchronise the enhanced display firmware, and already does the same job (more by luck than management) for the existing firmware.

The existing display protocol treats any value below 32 decimal as a potential command (though only a few “real” commands exist), so all IDM command codes are above this figure. Thus, only commands that take data values have any potential to affect the displays, and only a few actual data (or checksum) values will have any practical effect. However, as a precaution, it is advisable to either keep the displays in standby while sending such commands, or to refresh them immediately afterwards. With the enhanced firmware, the displays will be completely immune from any IDM messages, as they will operate on a similar protocol, using different header and terminator codes.

QUICC-IDM to PC Status Message structure
All IDM status messages have the following structure (all fields are byte wide):

<00h>, <00h>, <FEh>, <version>, <status flags>, <init portB>, <current portB>, <boot portB>,

<tripped portB>, <reserved>, <reserved>, <standby timer>, <boot timer>, <psu timer>, <flash 1 dividers>,

<flash2 dividers>, <reserved>, <checksum>, <EFh>

Detailed descriptions of these fields follow:

version - this is the QUICC-IDM firmware revision number, split into two nybbles. Bits 0 -3 form the sub number, and bits 4 - 7 form the main number. Thus a value of 1Ah would be reported as 1.10 in decimal.

status flags - these are an array of 7 bit flags (bit 7 is always set), indicating various aspects of QUICC-IDM’s operation, as follows:

bit 0 - indicates system in standby mode (display panels in reset, standby LED lit)

bit 1 - indicates system is reporting a fault (fault LED flashing red)

bit 2 - indicates system has been started since reset (clear means just reset)

bit 3 - indicates last reset was due to a PIC watchdog trip (as opposed to power on/button push)

bit 4 - indicates system currently re-booting after PIC watchdog trip

bit 5 - indicates display panels currently being booted, or system is in “boot hold” mode

bit 6 - indicates non-volatile EEPROM checksum bad (corrupted data)

Note that several flags can be combined, so for example, bits 0 and 1 can be set, indicating that a standby request was received during fault mode. Also note that bit 6 should never be set under normal circumstances, and indicates a data error in the non-volatile memory. See later for more details.

init portB - this is the raw PIC port B status, read on startup when the display panels were held in reset. In this case, bits 1 - 3 represent the configuration switches, C1 to C3, respectively (0 means switch closed, and 1 means switch open). This allows the PC to determine how these switches are set. Bit 4 indicates the standby switch setting, though this should be read from the current port B status (see below).

current portB - this is the raw PIC port B status, read at the time the message was sent. If the system is in standby mode (check bit 0 of status flags), then this will represent the current config switch settings (which will not be used by the system, as they’re only read on startup). Otherwise, they will indicate the three display panel watchdog signals, fed through switches W1 to W3, respectively. If the bit is high, then the panel is indicating a good status, is not fitted, or the switch is open (note that a display panel that has completely lost 5V will also indicate good). If low, then the panel is currently indicating a fault. As mentioned above, bit 4 indicates the current standby switch setting, and this is the field it should be extracted from.

boot portB - this is the raw PIC port B status, read whenever the panels are being booted, and also just after a system reset. At this point, the panels are out of reset, but the PSU is off, so the watchdogs on all fitted panels should indicate a failure. This allows you to determine which panels are fitted to the system, though there are a few points to note. See later for more details.

tripped portB - this is the raw PIC port B status, read just before the PSU is turned off when the system is entering failure mode (it will be FFh if this has never happened since the last system reset). This allows you to determine which panel(s) caused the fault, as the PSU is turned on, so all “good” panels should still be indicating a healthy status. However, if the PSU has itself failed, or is shorted, then all fitted panels will be indicating a bad status, so this condition can be determined as well.

standby timer - this is the raw standby timer store (how long before the system goes into standby mode after the last DTR toggle or “wake up” message received), mirroring that which is stored in the non-volatile EEPROM memory. To convert it to milliseconds, subtract 2 and multiply by 512. Normally, this is reported to the nearest second, so should be divided by 1000 and rounded up of the remainder is greater than 500 milliseconds. For example, a value of 54h will convert to 42 seconds, which is the default value.

boot timer - this is the raw boot timer store (time between PC requesting boot and PSU being switched on), mirroring that which is stored in the non-volatile EEPROM memory. To convert it to milliseconds, multiply by 20, so for example, a value of 14h will convert to 400ms, which is the default value. The main purpose of the boot timer is to prevent the PSU from being turned on too quickly after it was last turned off, as well as allowing the initial “boot portB” value to be read. See later for more details.

psu timer - this is the raw PSU override timer store (time the PSU is held on before the panel watchdogs are monitored), mirroring that which is stored in the non-volatile EEPROM memory. To convert it to milliseconds, multiply by 20, so for example, a value of 0Fh will convert to 300ms, which is the default value. The main purpose of the PSU timer is to allow the PSU sufficient time from being turned on to reach full output, so that all displays indicate a healthy status. See later for more details.

flash 1 dividers - this byte is split into two nybbles, bits 0 - 3 selecting the “off” divider, and bits 4 - 7 selecting the “on” divider. When both are set to 1, flash clock 1 follows DTR (being set when DTR is logic 1), assuming the config links are set to 1A. With different values, the clock will only change state once the appropriate number of DTR toggles have taken place. Thus a value of 24h would result in the clock being high for 2 cycles, and low for 4.

flash 2 dividers - this byte is split into two nybbles, reversed from flash 1, so bits 0 - 3 select the “on” divider, and bits 4 - 7 select the “off” divider. When both are set to 1, flash clock 2 follows the inverse of DTR (being set when DTR is logic 0), assuming the config links are set to 2A. With different values, the clock will only change state once the appropriate number of DTR toggles have taken place. Thus a value of 24h would result in the clock being low for 2 cycles, and high for 4. Note that if this is set to the same value as flash 1, the two clocks will operate in antiphase (providing they were reset - see later).

The checksum is the sum of all the data fields, excluding the header and terminator codes. Note that it is substituted with 5Ah if it would otherwise become zero, in order to prevent zeros being transmitted as part of the message.

Note that QUICC-IDM transmits two leading zeros, as one can become lost if the PC contains rubbish in its input buffer at startup. The PC code should simply treat zero as a resynchronisation character, and wait for a valid header to be received. When the new display firmware becomes available, other header codes will be transmitted back from the panels, so the PC code should be designed to cope with this.

As mentioned previously, some commands can complete before the relevant status flags take effect, particularly “action” commands such as start up and shut down. However, all commands that take a value will always update the value in the status message, in order for it to be checked. Timer values that are stored in EEPROM are read back from this memory, so if they are not stored (because a write enable message was not sent, or config switch 3 is open), they will not be updated. This can be verified by the PC code (which should also check the switch and warn the user if it is open).

PC to QUICC-IDM Command Descriptions
This section gives detailed descriptions of all the commands that can be sent to the QUICC-IDM board. All commands conform to the message structure defined above, and unless otherwise stated, take a default value of 32 (hex 20h). QUICC-IDM will always return a standard status message after it has processed a command. Note that any unrecognised command code will simply be treated as a “get status” command.

Command 40: Get status - This command does nothing apart from returning a status message, so is a handy way of obtaining the status of the IDM board.

Command 41: Wake up from Standby - This command will cause QUICC-IDM to boot the panels, if it is currently in standby mode. If the board is already running, this resets the standby timer, so can be used as an alternative method of keeping the system awake rather than toggling DTR. If the system is currently in fault reporting mode (“fault” LED flashing), then this command will take the panels out of reset (and extinguish the standby LED), if they were previously in reset.

Command 42: Enter Standby mode - This command will cause QUICC-IDM to go into standby, if it is currently running and the standby switch (SBY) is closed. The PSU will be switched off, and the standby LED will be illuminated. If the system is currently in fault reporting mode (“fault” LED flashing), then this will put the panels into reset (even if the standby switch is open, for IDM firmware revisions 1.04 and greater), illuminating the standby LED as well. This may be useful in the very unlikely event of a malfunctioning panel blocking QUICC-IDM’s comms (because it is holding its comms line low), as the receive line from the panels is disabled when they are in reset, so the IDM comms can be recovered.

Command 43: Enter Boot Hold mode - This command is supported on firmware revisions 1.04 and greater, and will cause QUICC-IDM to go into the special “boot hold” mode, where the panels are out of reset but the PSU is off. While in this mode, only the “boot” LED is illuminated and bit 5 of the status flags is set. Issuing a “wake up” command will turn on the PSU and complete the panel boot as usual, while an “enter standby” command will put the system back into standby. When “boot hold” mode is entered, the system waits for the current Boot timer period before performing any further actions, though further commands can be queued during this interval. Thus issuing a “boot hold” command immediately followed by a “wake up” command will boot the system as if just the latter command had been issued. Note that you can also briefly reset the display panels in this mode by using the “reset display panels” command (see below). The “boot hold” mode is primarily intended for diagnostic purposes, where you wish to communicate with the display hardware without anything being displayed, though it could be used as a “non-volatile” standby mode, where the display contents are preserved while the PSU is off.

Command 50: Load default timer values - This command will cause QUICC-IDM to update all the timer values in EEPROM memory with the default settings (assuming config switch C3 is closed), and must be preceded with an EEPROM enable command (see below). The default values are:

42 seconds (42h raw value) for standby timer

400ms (14h raw value) for boot timer

300ms (0Fh raw value) for PSU override timer

The returned status message will reflect the updated timer values, so they can be verified by the PC if required. They will not be updated if either config switch C3 is open, or an EEPROM enable message was not sent. It is also worth checking the EEPROM checksum status flag (see status message description), to verify that all values were correctly stored.

Command 51: Load Standby timer value - This command will update the stored standby timer setting in EEPROM memory with the specified value, which can be in the range 0 seconds (hex 02h) to 129 seconds (hex FEh). It must be preceded with an EEPROM enable command (see below). To convert from milliseconds to the raw hex value, divide by 512 and add 2. Thus a value of 42 seconds will convert to 54h, which is the default value. Note that this message will also reset the standby timer itself to the new value. The returned status message will reflect the updated timer value (as long as config switch C3 is closed, and an EEPROM enable message was sent), so can be verified by the PC if required. Note that for QUICC-IDM firmware revisions 1.04 and later, a raw value of hex FFh effectively disables the timer, so the system will only go into standby if it receives an Enter Standby command.

Command 52: Load Boot timer value - This command will update the stored boot timer setting in EEPROM memory with the specified value, which can be in the range 20ms (hex 01h) to 5100ms (hex FFh). It must be preceded with an EEPROM enable command (see below). To convert from milliseconds to the raw hex value, divide by 20. Thus a value of 400ms will convert to 14h, which is the default value. The returned status message will reflect the updated timer value (as long as config switch C3 is closed, and an EEPROM enable message was sent), so can be verified by the PC if required.

Command 53: Load PSU Override timer value - This command will update the stored PSU timer setting in EEPROM memory with the specified value, which can be in the range 20ms (hex 01h) to 5100ms (hex FFh). It must be preceded with an EEPROM enable command (see below). To convert from milliseconds to the raw hex value, divide by 20. Thus a value of 300ms will convert to 0Fh, which is the default value. The returned status message will reflect the updated timer value (as long as config switch C3 is closed, and an EEPROM enable message was sent), so can be verified by the PC if required. Note that this timer should be adjusted with caution, as too high a value could potentially result in damage to the system under certain fault situations.

Command 54: Re-load timers from EEPROM - This command simply reloads the timer settings from the internal EEPROM memory, and is only intended for test purposes, as the live values are always updated whenever the EEPROM is changed.

Command 55: Enable EEPROM update - This command must be sent immediately before any command which updates the EEPROM memory, otherwise that command will fail. EEPROM writes will be disabled again once any other IDM command has been actioned. This mechanism is designed to protect the EEPROM against spurious writes caused by software malfunction, power glitches or whatever. Note that config switch C3 must be closed for EEPROM writes to be enabled.

Command 60: Reboot system via PIC Watchdog trip - This command is only intended for test purposes, and causes QUICC-IDM to re-boot, by letting the PIC watchdog timer time-out. During this operation, both the “boot” and “standby” LEDs are illuminated. After the actual re-boot occurs, the system will wait for 5 seconds before it is ready for use. This delay is a deliberate safety feature in the event that the PIC resets due to a fault.

Command 61: Recover from Fault mode - This command causes QUICC-IDM to jump back to standby mode, if it is currently indicating a fault (“fault” LED flashing). If the standby switch (SBY) is open, the system will almost immediately attempt to reboot the panels. It can be used for automatic fault recovery, but bear in mind that most faults are liable to mean that manual intervention is required, so there should be an upper limit on the maximum number of automatic recovery attempts made. Bear in mind that the protection circuit is designed to prevent damage to the system, and that under certain fault situations, each recovery attempt will result in excessive currents flowing for however long the PSU override timer is set to. Finally, note that this command will only be actioned on every full LED flash cycle, so there could be a delay of up to 1 second before standby mode is entered.

Command 62: Reset display panels - This command causes QUICC-IDM to briefly reset the display panels, if the system is currently in run mode, “boot hold” mode or reporting a fault. If it is in standby, this command briefly flashes the Boot LED (firmware 1.06 and later). In run mode, the system will wait for 0.24 seconds after the reset before monitoring the watchdogs again; this gives the panels plenty of time to recover (the existing firmware takes approx. 70ms to start scanning from reset). Note that if the system is currently reporting a fault, this command will leave the panels out of reset (Standby LED extinguished), even if they were previously in reset after a Standby request (Standby LED illuminated). Also note that this command is only supported on QUICC-IDM firmware revisions 1.01 and later.

Command 63: Lamp test Fault LED - This command causes QUICC-IDM to illuminate the Fault LED for 1 second, unless it is already in fault reporting mode. It is useful as a “lamp test” feature, since there is no other method of testing this LED without generating a fault situation (removing the PSU control signal, for example). Note that this command is only supported on firmware revisions 1.06 and later.

Command 70: Reset flash clocks and counters - This command resets both flash clocks to the default state (flash 1 off, flash 2 on with flash config links set to 1A and 2A, respectively), and sets both flash counters to the maximum divider values. This effectively synchronises the flash clocks, so that they will always start from a known state.

Command 71: Set flash 1 divider - This command sets the flash clock 1 divider to the specified value. With the config links at 1A, the upper nibble determines the “on” period, and the lower nibble determines the “off” period. With both dividers at unity (raw value 11h), the flash clock will follow DTR directly (flash 1 off with DTR low, with config links at 1A); otherwise, it will be on and off for the appropriate number of DTR toggles. For example, setting the value to 42h, will result in flash 1 being on for 4 DTR toggles, and off for 2 DTR toggles, giving a mark-space ratio of 2:1. Note that both dividers must be non-zero values, otherwise undesired operation will occur. Also note that flash dividers are not stored in EEPROM, and will be lost after a system reset.

Command 72: Set flash 2 divider - This command sets the flash clock 2 divider to the specified value. With the config links at 2A, the upper nibble determines the “off” period, and the lower nibble determines the “on” period. With both dividers at unity (raw value 11h), the flash clock will follow DTR directly (flash 2 on with DTR low, with config links at 2A); otherwise, it will be on and off for the appropriate number of DTR toggles. For example, setting the value to 42h, will result in flash 2 being off for 4 DTR toggles, and on for 2 DTR toggles, giving a mark-space ratio of 1:2. Note that both dividers must be non-zero values, otherwise undesired operation will occur. Also note that flash dividers are not stored in EEPROM, and will be lost after a system reset.

Command 73: Inverse Reset flash clocks and counters - This command works in the same way as the normal flash reset command, except that flash 2 is inverted (flash 1 off, flash 2 off with flash config links set to 1A and 2A, respectively). This allows the sequence to be started differently for special applications.

Command 74: Set flash 1 counter - This command sets the flash clock 1 counter to the specified value, and is intended for special applications where an exact starting point is to be defined. The counter values are not returned in the status message, and will be adjusted every time DTR toggles.

Command 75: Set flash 2 counter - This command sets the flash clock 2 counter to the specified value, and is intended for special applications where an exact starting point is to be defined. The counter values are not returned in the status message, and will be adjusted every time DTR toggles.

Getting the most out of QUICC-IDM
This section gives advice on the various facilities QUICC-IDM has to offer, and how to use them correctly. Please note that some of these ideas are suggestions only, and do not have to be implemented in a given piece of software. For example, QDSL does not support automatic fault recovery, even though it is possible with QUICC-IDM.

Booting the panels in a clean fashion (without “sign-on” message appearing)

The original QUICC board had a very simple startup circuit, which simply took the panels out of reset and simultaneously turned on the PSU. The result was that the display panels’ own “sign on” message appeared briefly before QDSL or WinDSL had a chance to clear it. QUICC-IDM has a dual-stage boot process that takes the panels out of reset before turning on the PSU, thereby allowing the driver software to clear down the “sign on” message before it would appear. This results in a very clean startup from the end user’s perspective.

To ensure a clean boot, the PC must blank the displays in the interval between issuing a start request and the PSU being turned on. This interval is defined by the Boot timer, which defaults to 400ms. However the value could be as long as 5 seconds, so this must be taken into account by the software. It may also be very short, down to 20ms, but in this case a brief “sign on” flash is probably unavoidable. For best results, the following procedure should be adopted:

1) Issue QUICC-IDM wake up command

2) Pulse DTR high for 100ms to maintain QUICC compatibility

3) Wait for 100ms to ensure panels ready to accept data

4) Blank the displays, by filling them all with space characters

5) Wait until the PSU control signal goes active, indicated by DSR (timeout in 6 seconds)

6) Wait for a further delay, typically 300ms, to ensure PSU fully started

7) Start outputting data to the panels.

This procedure will cope with Boot timer values down to approx. 200ms, and in practice, the timer could go even lower before a “sign on” message would appear. It is also fully compatible with original QUICC boards. If you want to be clever, you could also check the IDM status before step 5, and not bother waiting for the delay if is indicating a fault, or is still stuck in standby mode.

Note that for QUICC-IDM firmware revisions 1.04 and greater, you could modify the above procedure to use the new “boot hold” command. This can be achieved by replacing step 1 above with this command, and adding a new “wake up” command in between steps 4 and 5. If you don’t want to restart a system which is already running, then you should check this before step 1 and only issue the “boot hold” command if it is in standby. The advantage of this approach is that a “sign on” message will never appear, regardless of the Boot timer setting.

Working out which panel(s) caused a fault
QUICC-IDM has in-built advanced fault reporting, where the PIC records which panels were indicating a watchdog failure before shutting down the PSU. This is returned in the “tripped port B” field in the status message, which will be FFh if the system has never tripped since the last reset. Once the PSU has shut down, all connected panels should be indicating a fault, and this is available in the “current port B” field in the status message (unless the system has gone into standby mode). If all connected panels were indicating a fault in the tripped status, then it’s likely that the PSU itself had failed, or was shorted; otherwise this field should indicate which panels caused the fault.

Note that when a fault is detected, the system waits for a fixed 100ms delay before storing the tripped status, and re-evaluating the fault (operation continues normally if the fault has cleared at this point). This ensures that if the PSU has failed, or been shorted, all connected panels should indicate the fault.

To maintain compatibility with the original QUICC board, the PC software should still use DSR as the primary means of fault detection. Once this is the case, it can then interrogate QUICC-IDM for further status information, and report it appropriately. In order to cope with various fault conditions, the following procedure should be adopted:

1) Check if the status flags indicate PIC watchdog trip, and system just started (bit 3 set, bit 2 clear). If so, the system has just reset to a PIC software malfunction.

2) Check if the status flags indicate system just started (bits 2 and 3 clear). If so, the system has just been manually reset, or its power has been interrupted.

3) Check if the system is in standby mode (bit 0 set). If so, there is probably a fault with DTR, which has caused the standby timer to time out.

4) Check if the system is not reporting a fault (bit 1 clear). If so, then there is something wrong with DSR or the board, as QUICC-IDM thinks it’s running normally.

5) Finally, you can assume that a genuine fault is being reported, and use the “tripped” and “current” port B fields to indicate which panels caused the fault, and are currently reporting a fault, respectively.

Working out how many panels are fitted
You can also use QUICC-IDM to indicate how many display panels are fitted in the system, and which watchdog positions they occupy. This is achieved by reading the port B status while the displays are out of reset but the PSU is off, and is performed after a system reset, and whenever the panels are booted. The indication is returned in the “boot port B” field in the status message. While this is a useful indication, there are some important points to note:

1) This field can only indicate the number of panels fitted, and the watchdog positions they occupy. It cannot indicate which panels are available to the software for display purposes, as the software tile select links are independent from the watchdog select links. While the QUICC-IDM Installation and Operating guide advises they are mapped 1-1, this cannot be guaranteed, so any software using this feature should take this into account.

Note that QUICC-IDM firmware revisions 1.01 and greater now always generate a reliable indication, even if the PSU is still outputting a voltage while this check is done (due to resetting the system while it was running). This is achieved by monitoring the port B status very shortly after taking the panels out of reset. Since the panels take a finite time (approx. 70ms) to start scanning from reset, they will always indicate a watchdog failure at this point, regardless of the PSU status.

Setting the Boot and PSU Override timers to optimum values
These timers are designed to optimise the performance of your system, and depend on the hardware available, specifically the type of display PSU being used, and how it’s being controlled. The values are stored in non-volatile EEPROM memory, and are designed to be set once while the system is being commissioned, and subsequently left alone. For this reason, QDSL does not provide the facility for setting these timers, a separate utility IDMUTIL being provided for this purpose.

The Boot timer defines how long the system waits between receiving a boot request (where the panels are taken out of reset), and switching on the PSU. It is set to 400ms as default, which should allow ample time for the controlling software to perform a clean boot (blanking the displays before the PSU is turned on). For systems using the original 8V PSU (X9191), this is the ideal setting, but for systems using an external relay to switch the mains supply to a PSU, a significantly longer value is advised. This is because switch mode PSUs do not like short mains interruptions, so a minimum holdoff delay is required. For most supplies, a delay of approx. 2 - 3 seconds is advised. Remember that this is the minimum holdoff delay, when for example the reset button is pushed and the standby switch is open; in most situations, the PSU will be off for significantly longer than this.

The PSU Override timer defines how long the PSU is held on after a boot before the display watchdogs are monitored. A delay here is necessary because the displays will only indicate a healthy status once they receive power. It is set to 300ms as default, which should be adequate for most types of PSU, and ample for systems using the original 8V PSU (X9121). In fact, for the latter systems, it can be reduced down to less than 100ms with no problem, because the PSU provides output almost instantly. For PSUs switched by the mains, there may be a significantly longer startup delay, so this timer should be lengthened if necessary. However, it should always be kept as short as possible, since under certain fault situations, excessive currents may be flowing while the PSU is on, and may cause damage if allowed to flow too long!

Controlling system Standby mode, and adjusting the Standby Timer
The original QUICC board used a simple hardware timer to put the system into standby some time after the DTR signal had stopped toggling. DTR was also used to re-boot the system from standby. QUICC-IDM still allows for this type of operation, but also provides additional commands for more deterministic operation. Note that the following discussion is only valid if the standby switch (SBY) is closed; if open, the system will never enter standby, even if a specific standby command is sent to it.

One problem with the original system was that the system could wake up if the PC was turned off, due to noise on the open circuit DTR line (this has been observed on occasion). It would also start when Windows was starting up, as this toggled the DTR line. QUICC-IDM has solved this by ignoring DTR while in standby, unless config switch C1 is open (forces QUICC DTR compatibility mode). Instead, you simply send it a “wake up” command, and the board will boot up as normal.

While the system is running, DTR is still monitored, and if it stops toggling, the system will go into standby after the standby timer period has elapsed. This ensures that the system will power down if the PC software is stopped. When the system is running, any DTR toggle will reset the standby timer, as will a system “wake up” message. It is thus possible to keep the system awake by repeatedly sending such messages, even if DTR is not being toggled. Note that any command that actually updates the standby timer from EEPROM will also reset the timer to the new value.

When updating the standby timer, remember to keep it longer than the longest interval that DTR may take to toggle, otherwise the system will inadvertently go to sleep. A default value of 42 seconds was chosen, but any value down to 5 seconds is reasonable. If QDSL is being called in batch mode (from another program), then a the standby timer should be set to be longer than the maximum interval between calls to QDSL.

If you specifically want to put the system into standby from within the PC software, you can now send a specific “enter standby” command. When doing this, you should also stop toggling DTR, to ensure systems with old QUICC boards (or those with config switch C1 open) go to sleep after their normal timeout.

Note that with QUICC-IDM firmware revisions 1.04 and later, you can disable the standby timer altogether by setting the raw hex value to 0FFh. This only affects the timer itself, and still allows you to put the system into standby via the “enter standby” command.

Automatic fault and IDM comms recovery
To implement automatic fault recovery, simply send a “recover from fault” command, and the system will jump back to standby mode. If the standby switch SBY is open, then it will almost immediately attempt to reboot; otherwise sending another boot request will start it up again. Note that most faults will require manual intervention (in other words, repairing), so it’s quite likely that the system will shut down again under these circumstances. Since some faults may result in excessive currents flowing whenever the PSU is turned on, retrying too many times is not recommended, so it’s advisable to limit the number of retries to a sensible value (three is reasonable).

Another potential (though extremely unlikely) fault is where a panel is continually asserting its transmit line, or continually sending data back. Since the IDM transmitted comms is gated with the display comms, this effectively stops the PC receiving any IDM status information. However, in standby mode, QUICC-IDM effectively disconnects the display transmit line, so comms can be restored. Therefore, you can attempt to restore IDM comms, using the following procedure:

1) Send an “enter standby” request, followed by a status request after a delay of approx. half a second. If you get a reply, QUICC-IDM was either in fault mode or the system was originally running, and the standby switch SBY was closed (note that for IDM revisions 1.04 and greater, this recovery mechanism should work in fault mode regardless of the standby switch setting).

2) If you don’t get a reply, the standby switch SBY may be open, but if this is the case DSR should also be active, indicating that the board still thinks it’s running. In this case, you could issue a “system re-boot” request, but this isn’t going to tell you anything useful. Otherwise, the board itself is probably faulty, or config switch C2 (dumb mode) is open.

Note that you can simulate the loss of IDM comms by opening config switch C2 (and re-booting, because it’s only read on startup). This can also be used to check how the PC software copes with an original QUICC board, as it should assume an IDM board is not present if it doesn’t get a response to the first status request it sends. Note that even in “dumb” mode, the IDM board still understands and acts on commands; it just doesn’t send back a status message.

SYMBOL 181 \f "Wingdings" Page 10 of 10 SYMBOL 181 \f "Wingdings"

